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Abstract. Recently, many defenses against the offensive technique of
return-oriented programming (ROP) have been developed. Prominently
among them are kBouncer, ROPecker, and ROPGuard which all target
legacy binary software while requiring no or only minimal binary code
rewriting.
In this paper, we evaluate the effectiveness of these Anti-ROP defenses.
Our basic insight is that all three only analyze a limited number of re-
cent (and upcoming) branches in an application’s control flow on certain
events. As a consequence, an adversary can perform dummy operations to
bypass all employed heuristics. We show that it is possible to generically
bypass kBouncer, ROPecker, and ROPGuard with little extra effort in
practice. In the cases of kBouncer and ROPGuard on Windows, we show
that all required code sequences can already be found in the executable
module of a minimal 32-bit C/C++ application with an empty main()
function. To demonstrate the viability of our attack approaches, we im-
plemented several proof-of-concept exploits for recent vulnerabilities in
popular applications; e. g., Internet Explorer 10 on Windows 8.
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1 Introduction

Defensive measures against memory corruption and control flow hijacking at-
tacks have been considerably improved recently, especially on the software side.
Widely deployed techniques such as address space layout randomization (ASLR)
and data execution prevention (DEP) often greatly hamper successful exploita-
tion of a given vulnerability or even succeed in preventing the attack at all. In
many cases, however, an advanced and dedicated attacker is still able to ulti-
mately bypass these defenses and achieve reliable exploitation [1, 7, 16,27].

An offensive technique that is used in many of today’s successful attacks
is called return-oriented programming (ROP) [17, 28]. With this technique, an
attacker does not inject her own shellcode as part of the attack payload, but she
reuses existing code and chains small code fragments (so called gadgets) together
that perform malicious computations. Due to the effectiveness of this approach,
it comes as no surprise that in the last few years many defensive mechanisms
specifically targeting ROP have been proposed. Three recent representatives of
such methods are kBouncer [25], ROPecker [8], and ROPGuard [10].
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In this paper, we evaluate the effectiveness of these proposed methods and
demonstrate their limitations. We first analyze kBouncer, a defensive mecha-
nism that aims at detecting and preventing ROP-based attacks against user
mode applications on the Windows operating system. kBouncer leverages the
last branch recording (LBR) feature incorporated in current AMD and Intel x86-
64 CPUs [3, 15] to check for suspicious control flows. kBouncer received broad
attention not only from the research community when its first version [24] was
announced as the $200,000 winner of the Microsoft BlueHat Prize [2]. We show
that kBouncer’s latest version [25] can be circumvented in virtually all realistic
32-bit and 64-bit attack scenarios with little extra effort. More specifically, we
demonstrate how three recent ROP-based exploits—e. g., for Microsoft Internet
Explorer on Windows 8—can be modified to bypass kBouncer. Furthermore,
we show that even the .text section of a minimal 32-bit C/C++ application
compiled with Microsoft’s Visual Studio contains all necessary gadgets required
to bypass kBouncer. We demonstrate how successful attacks against kBouncer
in practice often also circumvent ROPGuard. This method placed second at
the BlueHat Prize and has since been incorporated into Microsoft’s Enhanced
Mitigation Experience Toolkit (EMET).

The third defensive measure we examine is ROPecker [8]. This approach was
presented in 2014 and it also leverages the LBR feature to protect applications
on Linux from ROP-based attacks. We show that ROPecker suffers from con-
ceptual weaknesses similar to kBouncer. In its published form, ROPecker can be
circumvented in a generic way by an adversary. We empirically verify our attack
and demonstrate a successful low-overhead bypass for a recent vulnerability of
the popular web server software Nginx.

In summary, the contributions of this paper are as follows:

– We discuss several kinds of commonly available 32-bit and 64-bit gadgets
that an attacker can utilize to perform malicious computations in a way
resembling benign control flow.

– We demonstrate that ROP defenses based on analyzing a limited number of
branches can be bypassed by an attacker in a generic way and that such a
bypass requires little extra effort.

– We empirically verify our proposed approaches and present successful attacks
against the three recent ROP defenses kBouncer, ROPecker, and ROPGuard.

– We assess the practical susceptibility of kBouncer and ROPecker to false
positive detections of attacks using independently implemented emulators.
We discover for both schemes that false positives are not unlikely to occur
for at least certain popular applications.

2 Technical Background

We briefly review the basic concepts behind return-oriented programming and
last branch recording that are fundamental to understand the rest of the paper.
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2.1 Return-Oriented Programming

Generally speaking, an attacker’s goal is the execution of certain code (referred to
as shellcode) of her choice in the context of a vulnerable application. Typically, an
attacker initially exploits some kind of software bug (e.g., a memory corruption
vulnerability or a dangling pointer) to hijack an application’s control flow.

As DEP has become prevalent, adversaries often resort to reusing (native)
code already present in an application instead of directly injecting new shellcode,
for example via exploitation techniques such as return-to-libc [23] or return-
oriented programming (ROP) [17,28]. With ROP, small code fragments—called
gadgets—ending in a return instruction are consecutively executed: an attacker
can “program” the desired semantics by writing a chain of addresses of gadgets
to the stack of one of the target application’s threads in such a way that each
gadget “returns” to its successor. This chain of gadgets is often referred to as
ROP chain. On x86-64 platforms, gadgets can be aligned as well as unaligned
with the original instruction stream produced by the compiler, as instructions
may start at any offset into a code page. Typically, suitable gadgets for ROP
attacks exist in sufficient quantities in most non-trivial applications [9,13]. There
are also ROP-compilers [14, 31, 32] that can for example automatically convert
a given shellcode into an application-specific ROP chain. Advanced techniques
closely related to ROP have been presented that leverage gadgets not ending in
return instructions but typically some kind of indirect jumps [4,6]. Accordingly,
these techniques are also known as jump-oriented programming (JOP). In the
following, we use the term ROP inclusively for JOP.

One widely deployed generic countermeasure against ROP is ASLR: modules
are loaded at pseudo-random base addresses resulting in the whereabouts of
gadgets being hard to predict. If not stated otherwise, we assume in the following
discussions that the attacker has ways to gain knowledge on the base address of at
least one executable module of sufficient size. We stress that this is no ambitious
assumption as it is generally fulfilled for real-world ROP-based exploits [1,7,16].

2.2 Last Branch Recording

kBouncer and ROPecker rely on the Last Branch Recording (LBR) feature of
contemporary AMD and Intel processors [3,15] to examine an application’s past
control flow on certain events.

The LBR can only be enabled and accessed from kernel mode. It can be
configured to only track certain types of branches. Both kBouncer and ROPecker
utilize this feature and they limit the LBR to indirect branches in user mode.
For each recorded branch, an entry containing the start and destination address
is written to the corresponding CPU core’s LBR stack. In Intel’s latest Haswell
architecture, an LBR stack is limited to only 16 entries. For each newly recorded
branch, the oldest entry in an LBR stack is overwritten. At any given time, an
LBR stack may not only contain entries from a single process/thread, but from
multiple ones running on the same core [8]. In the following, we do not consider
this effect, though, it might in practice facilitate attacks. Instead, for simplicity,
we assume that the LBR stack is always saved/restored on context switches.
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3 Security Assessment of kBouncer

The latest version of the kBouncer runtime ROP exploit mitigation approach was
presented by Pappas et al. in 2013 [25]. kBouncer checks for suspicious branch se-
quences hinting at a ROP exploit whenever a Windows API (WinAPI) [29] func-
tion considered as possibly harmful is invoked in a monitored process. kBouncer’s
authors list 52 WinAPI functions which they consider as possibly harmful.
Among these functions are for example VirtualAlloc() and VirtualProtect()

that are notoriously abused by attackers. Pappas et al. acknowledge that the list
is possibly not complete and could be extended in the future.

kBouncer is composed of a user mode component and a kernel driver. The
user mode component hooks all to-be-protected WinAPI functions in a moni-
tored process. Whenever the control flow reaches one of these hooks, the kernel
driver is informed via the WinAPI function DeviceIoControl(). Subsequently,
the driver examines the LBR stack for traces of a ROP chain. Since kBouncer’s
user mode component uses two indirect branches to inform the driver, only 14 of
the LBR stack’s 16 entries are of value to the driver’s ROP detection logic [25].
In case no attack is detected, the driver saves a corresponding “checkpoint” in
kernel memory for the respective thread. Whenever a system call correspond-
ing to a hooked WinAPI function is invoked, the driver consumes the matching
checkpoint; if none is found, an attack is reported. According to Pappas et al.,
the purpose of the checkpoint system is to prevent exploit code from simply
skipping over the top-level WinAPI functions and calling similar lower level
functions (e. g., NtCreateFile() instead of CreateFileW()). The reason for
kBouncer not monitoring system calls directly is the observation that between
WinAPI functions’ and their corresponding system call often many legitimate
indirect branches are executed that would often overwrite traces of ROP chains
in the LBR stack [25].

In order to evaluate kBouncer’s practical applicability and defensive strength,
we created a standalone emulator for kBouncer based on certain pieces of source
code generously provided to us by Pappas et al. The emulator uses the Pin [18]
dynamic analysis framework to instrument monitored applications at runtime.
To the best of our judgment, the emulator accurately captures all of kBouncer’s
core concepts as described by Pappas et al. [25].

3.1 Examination of Indirect Branch Sequences

When examining the LBR stack corresponding to the invocation of a WinAPI
function, kBouncer’s kernel driver assumes an attack if at least one of the fol-
lowing is encountered: (i) a return to an instruction not preceded by a call

instruction or (ii) a chain of a certain number of gadgets ending in the latest
LBR stack entry. For kBouncer, gadgets are up to 20 instructions long and may
contain conditional or unconditional relative jumps [25]. In the following, we re-
fer to gadgets under this definition as k-gadgets. Gadgets outside this definition
are conversely denoted as non-k-gadgets.
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Listing 1.1. Simple recursive C function
calculating the factorial of an integer

int f a c t o r i a l ( int n)
{
i f (n <= 1) return 1 ;
return f a c t o r i a l (n−1)∗n ;
}

Listing 1.2. Disassembly of epilogue
of function factorial()

[ . . . ]
lea ecx , [ edi−1]
ca l l f a c t o r i a l
mul edi
pop edi
re tn

Gadget Chain Detection Threshold The maximum gadget chain length
kBouncer can identify is 13. This is due to only 14 LBR stack entries being of
value to kBouncer’s detection logic and the latest effective entry always corre-
sponding to a branch to a WinAPI function [25].

In order to determine a suitable detection threshold for the length of gadget
chains, Pappas et al. examined a set of popular Windows applications (e. g., Mi-
crosoft Word and Internet Explorer) at runtime while executing certain tasks [25].
They report on having found the LBR stack to contain chains of at most five
k-gadgets on entry to any of the 52 possibly harmful WinAPI functions across
their experiments. As a result, Pappas et al. defined kBouncer to consider chains
of eight or more k-gadgets as harmful, leaving a security margin of three against
false positives.

However, longer chains of k-gadgets can easily occur in practice in benign
and unsuspicious control flows. Consider for example a simple recursive function
calculating the factorial of an integer as shown in Listing 1.1 and Listing 1.2.
After the termination of factorial(n), the LBR stack contains a legitimate
chain of n − 1 k-gadgets of the form mul edi; pop edi; retn;, making the
control flow appear to contain a ROP chain under the kBouncer definition.
Many other possible scenarios exists where legitimate control flow resembles a
ROP chain under the kBouncer definition as well.

In fact, our kBouncer emulator detected k-gadget chains longer than the given
detection threshold for all non-trivial applications we executed on Windows 7
SP1 64-bit while monitoring the discussed 52 WinApi functions. For example,
saving a text file using the popular editor Notepad++ 5.9.8 (32-bit) reliably
resulted in one detected chain of the maximum length 13. The chain is depicted
in Figure 1: the chain starts towards the end of the destructor of the class
CAsyncParser in comdlg32.dll and spans over ole32.dll and shell32.dll before
ending in the protected WinAPI function CloseHandle(). The characteristic of
the chain is that several short functions are invoked in a nested manner using
indirect calls only.

Note that the discrepancy in quality and quantity of false positives detected
by our emulator and the original kBouncer could have many reasons. Possibly,
the dynamic disassembly provided by Pin to our emulator is more comprehen-
sive than the static disassembly available to kBouncer’s offline gadget extraction
toolkit. It is also very well possible that kBouncer employs certain additional
filtering techniques in practice. Of course we can also not entirely rule out inac-
curate assumptions on our side.
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[ ]
push    dword ptr [esi+58h] 
call    edi 
push    dword ptr [esi+26Ch]
call    ebx 
push    dword ptr [esi+270h] 
call    edi 
pop     edi
mov     ecx, esi
pop     esi
pop     ebx
nop
nop
nop
nop
nop
mov     dword ptr [ecx], vtable_parent 
mov     ecx, [ecx+14h]
test    ecx, ecx
jz      DllRelease() ; not taken
push    ecx             
xxx
[ ]
retn 8

Comdlg32.dll
CAsyncParser::~CAsyncParser()

call    edi

call    ebx

call    edi

call    ds:__imp__CloseHandle

mov     edi, edi
push    ebp
mov     ebp, esp
mov     eax, g_pMalloc 
push    [ebp+8]
mov     ecx, [eax]
push    eax
call    dword ptr [ecx+14h]
pop     ebp
retn    4

Ole32.dll
CoTaskMemFree()

call    dword ptr [ecx+14h]

retn 4

mov     edi, edi
push    ebp
mov     ebp, esp
cmp     [ebp+8], 0
jz      loc_A ; always taken
[...]
loc_A:
pop     ebp
retn    8

Ole32.dll
CRetailMalloc_Free()

retn 8

mov     edi, edi
push    ebp
mov     ebp, esp
pop     ebp
jmp     __imp__CoTaskMemFree

Shell32.dll
ILFree()

jmp     ds:__imp__CoTaskMemFree

Kernell32.dll
CloseHandle()

kBouncer

5

6

2, 7, 11

3, 8, 12

4

9

1

10

13

(14)

Fig. 1. Exemplary false positive chain of 13 k-gadgets as detected by our kBouncer
emulator for the “Save File As” dialogue in Notepad++ 5.9.8 (32-bit) on Windows
7 64-bit. Taken indirect branches are highlighted in light gray. Branches are labeled
according to the order they are executed.

3.2 Circumventing kBouncer

We now explore ways an aware attacker can follow to circumvent kBouncer.
We consider kBouncer as bypassed when it is possible (with respect to the ac-
tual limits imposed by a vulnerability) to reliably and repeatedly conduct the
following two consecutive steps without kBouncer noticing:

S1 execution of arbitrary ROP chain
S2 successful invocation of a WinAPI function protected by kBouncer

Obviously kBouncer can be safely bypassed if the last 14 indirect branches
leading to a protected WinAPI function cannot be distinguished from benign
control flow; regardless of the actually deployed gadget chain detection policy.
This is due to kBouncer’s driver being effectively only able to look at most 14
LBR stack entries into the past.

In view of this fact, Pappas et al. discuss the possibility of an attack based on
a seemingly legitimate gadget chain (returns leading to call-preceded locations
only and at least every eighth gadget being a non-k-gadget). They allude that
such an attack would be difficult and state that “if evasion becomes an issue,
longer gadgets could be considered during the gadget chaining analysis of an
LBR snapshot” [25]. Furthermore, they also discuss the possibility of an attacker
looking “[...] for a long-enough execution path that leads to the desired API call
as part of the applications logic”. They expect this kind of attack to be “[...] quite
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challenging, as in many cases the desired function might not be imported at all,
and the path should end up with the appropriate register values and arguments
to properly invoke the function”.

We find that an attacker could instead also employ a simpler third method:
the code executed between a ROP chain (step S1) and a protected WinAPI
function (step S2) does not necessarily need to be meaningful ; not in the context
of the ROP chain and neither in the context of the attacked application. Hence,
an attacker can simply execute arbitrary meaningless code between both steps in
order to flush the LBR stack prior to the inspection through kBouncer’s driver.
The only requirements such LBR-flushing code has to fulfill are:

– Sufficiently many (e. g., 14) unsuspicious indirect branches must be executed.
– The arguments to the to-be-invoked WinAPI function must not be altered.
– Other WinAPI functions protected by kBouncer must not be invoked.
– The execution environment must not be rendered uncontrollable; e. g., by

access violation exceptions or manipulation of the ROP chain on the stack.

In the following we (i) discuss suitable LBR-flushing code sequences and
(ii) explain how attackers can generically circumvent kBouncer by incorporat-
ing them into ROP chains. Attacks for 32-bit and 64-bit environments are dis-
cussed separately as they require slightly different approaches due to divergent
default calling conventions: in 32-bit applications, arguments to WinAPI func-
tions are passed over the stack (stdcall calling convention), whereas the first
four arguments are passed in registers in 64-bit applications (fastcall calling
convention) [20].

We limit ourselves to gadgets/code sequences that are likely to be present in
almost every process on Windows. In fact, all required gadgets/code sequences
can be found in standard Windows libraries and, at least for 32-bit, in every
C/C++ program created with default/common compiler and linker settings (at
least Release or Debug configuration; /Od, /O1, or /O2 optimization) using Mi-
crosoft Visual Studio versions 2010, 2012, or 2013. This is even valid for the
minimal C/C++ program with an empty main() whose .text section typi-
cally has an effective size of under 1 KB. We refer to this executable (Release,
/O2) as minpe-32 and minpe-64, respectively. All code that is present in minpe-
32/minpe-64 should also be present in virtually every other program compiled
and linked with default settings using Visual Studio.

3.3 Circumvention for 32-Bit Applications

LBR-Flushing Code Sequences For 32-bit programs, finding suitable LBR-
flushing code sequences is easy: basically most functions that make a certain
amount of sub-calls (each sub-call terminates in an indirect branch) and do not
much depend on or interfere with the global state of a program comply with the
listed requirements. In the following, we refer to a function with these properties
as LBR-flushing function (lbr-ff). We found for example lstrcmpiW()1 in ker-

1 lstrcmpiW() compares two Unicode strings in a case-insensitive manner.
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B
retn

call <anything>

jmp ({ESI, EDI, EBX, EBP})
A

call <anything>
A

call ({ESI, EDI, EBX, EBP})

i-jump-gadget i-call-gadget

Fig. 2. Formats of the 32-bit invocation gadget types i-jump-gadget (left) and i-call-
gadget (right); blocks labeled A and B may be empty or contain any sequence of
instructions not rendering the execution context uncontrollable.

nel32.dll to be such a function. When supplied with two identical pointers to (al-
most) arbitrary data as arguments, we found that it reliably executed more than
20 unsuspicious indirect branches. The fact that the function expects two argu-
ments is of course disadvantageous for an attacker, as this wastes precious space
on the (fake) stack. In practice, an attacker could ideally choose an lbr-ff with-
out arguments. E. g., we identified the two standard runtime library functions
pre_c_init() (statically contained in minpe-32) and EtwInitializeProcess()

(contained in ntdll.dll) as lbr-ffs with zero arguments. It should be clear that
suitable lbr-ffs are available in abundance in most real-world applications.

Invocation Gadgets Given an lbr-ff, the attacker’s goal is to execute it between
the ROP chain (step S1) and the invocation of a protected WinAPI function
(step S2) in order to flush the LBR stack just before kBouncer’s detection logic
is triggered. Executing the lbr-ff itself is trivial: it can be part of the ROP chain
just like any other gadget. Obviously though, the lbr-ff cannot simply “return”
in ROP-manner to the entry point of a protected WinAPI function; kBouncer
would certainly detect an attack, as entry points of WinAPI functions are never
preceded by a call in the static instruction stream.

Instead, the control flow needs to transition from the lbr-ff to the protected
WinAPI function in such a way that kBouncer cannot distinguish it from legiti-
mate control flow. We found that for an attacker to achieve this, the availability
of a call-preceded and controllable jump-based or call-based invocation gadget
as depicted in Figure 2 is sufficient. In the following, we refer to gadgets of these
formats as i-jump-gadgets and i-call-gadgets, respectively.

Given an i-jump-gadget or an i-call-gadget, a protected WinAPI function
can be invoked right after an lbr-ff in such a way that the control flow appears
legitimate to kBouncer. Figure 3 schematically depicts the control flows for both
types of gadgets: 0© From the ROP chain, the control flow is transferred to
the lbr-ff of choice via a traditional retn terminated gadget. We need to make
sure that at this point the address of the instruction sequence A (see Figure 2)
lies on top of the stack. 1© This makes the lbr-ff return to A right behind
the leading dummy call instruction of the i-jump-gadget/i-call-gadget. 2© The
protected WinAPI function is then invoked via the indirect jmp/call instruction
following A. Typically, this instruction should branch relative to the registers
esi, edi, ebx, or ebp (e. g., jmp [ebx*4+edi] or call esi). These registers are
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A jmp ({ESI, EDI, EBX, EBP})

LBR-FF
(e.g., strcmpiW)

returns to

Protected API
(e.g., WinExec)

jumps to

ROP Chain

returns to returns to

A call ({ESI, EDI, EBX, EBP}) B retn

LBR-FF
(e.g., strcmpiW)

returns to

Protected API
(e.g., WinExec)

calls

ROP Chain

returns to

returns to returns to

0

1 2

3 0

1 2

3 4

Fig. 3. Schematic control flow of the invocation of a protected WinAPI (32-bit); left:
i-jump-gadget right: i-call-gadget

premiere choices here, because they are defined to be callee-saved in all common
C/C++ calling conventions for x86 [20]. Hence, these registers can be assumed
to be unaltered by the invocation of virtually any lbr-ff. This allows the attacker
to set the registers using regular gadgets (before step 0©). 3©, 4© Depending on
the invocation gadget type, the WinAPI function either returns directly to the
ROP chain (i-jump-gadget) or a detour is taken over the instruction sequence B
(i-call-gadget).

kBouncer’s detection logic is triggered between steps 2© and 3©. At this point
kBouncer cannot detect an attack anymore, as the LBR stack exclusively con-
tains entries corresponding to branches executed after step 0©. Note that the
instruction sequence A is call-preceded. Hence, the return from the (legitimate)
lbr-ff to A is unsuspicious to kBouncer.

Passing of Arguments. Typically, the attacker would align arguments to the
WinAPI function on the stack prior to executing the lbr-ff (before step 0©). De-
pending on the nature of an invocation gadget though, arguments might also be
written to the stack by the instruction sequence A. Of course it is a require-
ment that the instruction sequence A does not alter the stack or register values
in such a way that the WinAPI function cannot be invoked as intended or the
control flow cannot properly resume afterward. For example, the i-jump-gadget
call <anything>; push 0; jmp edi; would allow to invoke a WinAPI func-
tion but would inevitably lead to the function returning to the invalid address 0.
Also, instructions triggering exceptions/interrupts must of course not be present
in A. Naturally, similar requirements apply to the trailing instruction sequence
B of the i-call-gadget.

Gadget Examples. An example for a suitable i-jump-gadget is given in List-
ing 1.3. The gadget’s A sequence (lines 2–6) is composed of xor operations
on general purpose registers. This should be unproblematic for the attacker in
almost all cases.

We implemented a Python script to statically identify this and multiple other
suitable i-jump-gadgets and i-call-gadgets in common Windows DLLs in an au-
tomated manner. We found this particular i-jump-gadget to be present in the
32-bit versions of kernel32.dll, kernelbase.dll, ntdll.dll, user32.dll, msvcr100.dll,
msvcr110.dll, msvcr120.dll, and msvcrt.dll of both Windows 7 and Windows 8.
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Listing 1.3. Aligned
i-jump-gadget in
TransferToHandler() found
in multiple Windows DLLs

1 ca l l sub 7DD9D8F5
2 xor eax , eax
3 xor ebx , ebx
4 xor ecx , ecx
5 xor edx , edx
6 xor edi , edi
7 jmp es i

Listing 1.4. Aligned i-call-gadget in
_onexit() of the standard Visual C/C++
library

1 ca l l es i
2 mov onex i tbeg in , eax
3 push dword ptr [ ebp−20h ]
4 ca l l es i
5 mov onex i tend , eax
6 mov dword ptr [ ebp−4] , 0FFFFFFFEh
7 ca l l $+10h
8 mov eax , edi
9 ca l l SEH epi log4

10 retn

All these DLLs are without doubt among the most frequently used ones on Win-
dows. In fact, ntdll.dll can be found in every Windows user mode process [29].
An example for an i-call-gadget is given in Listing 1.4. We discovered this gadget
in the static runtime library function _onexit() [21] contained in minpe-32 (and
other executables). While also allowing to generically bypass kBouncer, we found
the gadget to be slightly more complicated to handle than the i-jump-gadget in
Listing 1.3. Reasons are the presence of the push instruction in the gadget’s A
sequence (lines 2–3) and the presence of the two static calls in the B sequence
(lines 5–9).

Obviously, one of these two gadgets should be available to the attacker in
most scenarios. If not, it should in the uttermost cases be simple to find com-
parable gadgets given that the i-call-gadget was found in less than 1 KB of
code. Knowledge of these two gadgets proved to be sufficient when we adapted
high-profile real world exploits to be undetectable by kBouncer (see § 3.5).

3.4 Circumvention for 64-Bit Applications

The described 32-bit approach for bypassing kBouncer is only to some extent
applicable to 64-bit. In the default 64-bit calling convention on Windows, the first
four arguments to a function are not passed over the stack but in the registers
rcx, rdx, r8, and r9 [20]. Accordingly, an attacker would in most cases need to
preload these registers before the invocation of the lbr-ff if the 32-bit approach
was followed here. As these four registers are explicitly not callee-saved, they are
likely to be altered by almost all lbr-ff. Hence, a different approach is needed for
64-bit systems.

Loop Invocation Gadget We found a certain type of 64-bit gadget to be
especially suited for both the flushing of the LBR stack and the invocation of
protected WinAPI functions. A specimen contained in minpe-64 is given in List-
ing 1.5. The gadget is comparable to the dispatcher gadget that was discussed
as foundation for jump-oriented programming by Bletsch et al. [4]. The gad-
get interprets rbx as an index into a table of code pointers. rbx is gradually
increased and all pointers are called until rbx equals rdi. The gadget allows
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Listing 1.5. Aligned i-loop-gadget in
RTC_Initialize() of the standard Vi-
sual C/C++ library

@loop :
mov rax , [ rbx ]
test rax , rax
jz @skip
ca l l rax
@skip :
add rbx , 8
cmp rbx , r d i
jb @loop
mov rbx , [ rsp+28h+arg 0 ]
add rsp , 20h
pop r d i
re tn

Loop Inv.
Gadget

ROP Chain

API

...

Dummy

Dummy

&Dummy

&Dummy

&Dummy

&Dummy

&Dummy

&Dummy

&API

rbx

rdi

&Dummy
0 9

1

2

8

Fig. 4. Schematic control of the invocation
of a WinApi function (i-loop-gadget)

an attacker to execute an arbitrary number of gadgets/functions in a manner
that replicates benign control flow. Of course invoked gadgets must generally
not alter rbx or rdi. A very similar loop invocation gadget is for example also
contained in LdrpCallTlsInitializers() in the 64-bit ntdll.dll. We refer to
this type of gadget as i-loop-gadget. An i-loop-gadget can be used to flush the
LBR stack and to invoke a protected API subsequently as depicted in Figure 4:
if a return-succeeded dummy gadget is executed at least seven times before the
invocation of a protected API, the LBR stack does not contain any traces of
the actual ROP chain when kBouncer’s detection logic is triggered (for each
dummy gadget an indirect call/return pair is executed). However, finding a suit-
able dummy gadget is not as easy as it might seem. Obviously, the dummy
gadget must be a non-k-gadget as the i-loop-gadget in Listing 1.5 already is a
k-gadget. If both are k-gadgets, then an attack is detected by kBouncer. Further-
more, the dummy gadget must neither alter the registers rbx and rdi nor the
registers rcx, rdx, r8, and r9 carrying the arguments for the WinAPI function.
Also, the dummy gadget of course must not render the program state uncontrol-
lable to the attacker. We implemented a Python script to identify appropriate
dummy gadgets in standard 64-bit Windows DLLs. We found a variety of long
and aligned math related gadgets/functions in ntdll.dll and msvcr*.dll access-
ing (almost) exclusively the specialized SSE [15] floating-point registers xmm0 to
xmm7. For example, _remainder_piby2_cw_forAsm() in msvcr120.dll contains
a gadget that does not write to memory and only touches SSE registers and rax

while executing at least 26 instructions. We also found several long sequences
(20+) of nop instructions terminated by a return in ntdll.dll. Unfortunately, we
did not find a suitable dummy gadget in the .text section of minpe-64.

In practice, the attacker might very well interleave dummy gadgets with
meaningful k-gadgets, which do not alter rbx or rdi, in the invocation loop. In
fact, as kBouncer per default only considers chains of more than seven k-gadgets
harmful, it would be sufficient to execute a single dummy gadget at the fourth
position (marked dark gray in Figure 4). This would enable the attacker to use
the last three gadgets before the invocation of the WinAPI function to conve-
niently write arguments to the registers rcx, rdx, r8, or r9. This would result
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in less constraints regarding register usage for the employed dummy gadget.
Generically bypassing kBouncer using an i-loop-gadget is also possible for 32-bit
applications. We found for example the 32-bit equivalent of the i-loop-gadget in
Listing 1.5 to be also present in minpe-32. Using the i-jump-gadgets or i-call-
gadgets discussed in § 3.3 should though in most cases incur less overhead in
32-bit environments. Also, we found suitable dummy gadgets to be relatively
sparse compared to lbr-ffs.

3.5 Example Exploits

To demonstrate the practicality of the described kBouncer bypasses and to assess
the resulting overhead, we developed a set of example exploits which we briefly
discuss now. As it is tradition, our exploits launch the Windows calculator via an
invocation of WinExec(). We stress that in all cases much more complicated ex-
ploits with multiple WinAPI calls would have been easily possible. No standard
Windows defensive mechanisms like ASLR and DEP were disabled or manipu-
lated. We confirmed that our exploits would indeed circumvent kBouncer using
our emulator where possible. Due to technical constraints we resorted to manual
confirmation using a debugger for Internet Explorer and Firefox.

Minimal Vulnerable Programs. We extended the discussed minimal executables
minpe-32 and minpe-64 to contain a simple buffer overflow vulnerability. We
assumed that the attacker knew the base addresses of the main module and
msvcr120.dll. In both cases we used common gadgets from msvcr120.dll like
pop eax; ret; to construct a conventional ROP chain. We then used the dis-
cussed i-call-gadget and the lbr-ff in minpe-32 to invoke WinExec(); respectively
for the 64-bit variant we leveraged the i-loop-gadget in minpe-64 and the dis-
cussed dummy gadget in msvcr120.dll. For 32-bit ten extra dwords (32-bit words)
were needed in the ROP payload to bypass kBouncer (25 dwords vs. 35 dwords);
for 64-bit 20 additional qwords (64-bit words) were required (29 qwords vs. 49
qwords). The relatively large overhead for 64-bit stems from the inclusion of the
eight qword long code pointer table.

Details on the basic and augmented ROP chains for 32-bit and 64-bit can be
found in our technical report corresponding to this paper [30].

MPlayer Lite. Pappas et al. used a stack buffer overflow vulnerability in MPlayer
Lite version r33064 for Windows [1] to evaluate the effectiveness of kBouncer.
MPlayer Lite is compiled with MinGW’s GCC version 4.5.1. We used gad-
gets from the bundled avcodec-52.dll to build a conventional ROP-based ex-
ploit for the same vulnerability. To circumvent kBouncer, we augmented the
ROP chain by an i-loop-gadget located in the static runtime library function
TlsCallback_0() in mplayer.exe. As corresponding dummy gadget we chose an-
other one of MinGW’s static runtime library function. Altogether, 37 additional
dwords were needed for the augmented ROP chain (21 dwords vs. 58 dwords).
We found similar gadgets also in binaries compiled with different MinGW GCC
versions.
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Internet Explorer 10. We modified a publicly available exploit for an integer
signedness error in Internet Explorer 10 32-bit for Windows 8 by VUPEN Secu-
rity [16]. The original exploit was a winning entry at the popular 2013 Pwn2Own
contest. It uses JavaScript code to dynamically construct a ROP chain con-
sisting of 10 dwords to invoke WinExec(). In our modified version, four extra
dwords are used to incorporate the i-jump-gadget in Listing 1.3 (kernel32.dll)
and lstrcmpiW() as lbr-ff.

TorBrowser Bundle / Firefox 17. We modified the exploit allegedly used by the
FBI to target users of the TorBrowser Bundle [7]. The TorBrowser Bundle is
based on Firefox version 17.0.6 for Windows 7 32-bit. We use a ROP payload
of 54 dwords to invoke WinExec(). The version bypassing kBouncer includes
five additional dwords and uses the i-jump-gadget in Listing 1.3 (ntdll.dll) and
EtwInitializeProcess() (ntdll.dll) as lbr-ff.

3.6 Possible Improvements

We now briefly review three potential improvements to address our bypasses and
discuss their effectiveness.

Broadening of Gadget Definition. Pappas et al. propose that kBouncer could be
improved by considering gadgets longer than 20 instructions if evasion became
an issue [25]. We note that such an extension could not substantially tackle the
described 32-bit attacks using i-jump-gadgets or i-call-gadgets in conjunction
with lbr-ffs (see § 3.3): when kBouncer’s detection logic is triggered, the effective
LBR stack contains one entry corresponding to the invocation gadget and 13
to the lbr-ff. The lbr-ff’s LBR entries cannot reasonably be distinguished from
benign control flow, as the lbr-ff is a legit function of the attacked application
(e. g., lstrcmpiW()). A broader definition of k-gadgets could make it harder to
find dummy gadgets suitable for the (64-bit) attack approach based on i-loop-
gadgets (see § 3.4). In practice though, increasing the maximum gadget length
such that most suitable dummy gadgets are eliminated, would probably result in
unacceptable high numbers of overall false positives. Even for a maximum length
of 20, entire non-trivial functions fall already under the k-gadget definition.

Larger LBR Stack. Pappas et al. suggest that future CPU generations with larger
LBR stacks “would allow kBouncer to achieve even higher accuracy by inspecting
longer execution paths [...]” [25]. In such a case, our described approaches could
easily be adapted to create longer sequences of indirect branches resembling
benign ones. For example, the described i-loop-gadget can be used to create
such sequences of almost arbitrary length. Also, finding lbr-ffs which do so is
easy. The discussed lstrcmpiW() can for example be used to create dozens of
legit indirect branches.
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Heuristic Detection of Invocation Gadgets. One could attempt to extend k-
Bouncer to heuristically check for LBR entries corresponding to the discussed
types of invocation gadgets. This could, depending on the actual implementation,
very well fend off the described attacks. However, we expect high numbers of
false positives from such a measure, as the same invocation patterns can very
well occur for benign control flows.

4 Security Assessment of ROPGuard

ROPGuard is a runtime ROP detection approach for user mode applications
on Windows [10]. It placed 2nd to kBouncer at the BlueHat Prize and is in-
corporated into the Enhanced Mitigation Experience Toolkit (EMET) [22] that
is provided as optional security enhancement for Windows. Hence, ROPGuard
can be considered as the most widely spread advanced ROP countermeasure for
Windows applications.

Similar to kBouncer, ROPGuard hooks a set of critical WinAPI functions in
user mode processes. Whenever such a hook is triggered, ROPGuard as imple-
mented in EMET 4.1—the most recent version at the time of this writing—tries
to detect ROP-based exploits via a variety of checks. We describe the two most
relevant ones now briefly [10,19]:

– Past and Future Control Flow Analysis: ROPGuard verifies that the return
address of a protected WinAPI function is call-preceded. Furthermore, it sim-
ulates the control flow in a simple manner from the return address onwards
and checks for future non call-preceded returns. Simulation is performed un-
til a certain threshold number of future instructions was examined or any
call or jump instruction is encountered.

– Stack Checks: ROPGuard checks if the stack pointer points within the ex-
pected memory range for the given thread. It is common practice for attack-
ers to divert the stack pointer to a memory region (e. g., the heap) under
their control. ROPGuard also blocks attempts to make the stack executable.

Reports on how to bypass ROPGuard’s implementation in EMET have already
been published on the Internet (e. g., [26]). In fact, ROPGuard’s original author
Ivan Fratric suggests that an attacker who is aware of it “would be able to con-
struct special ROP chains that would [...] push ROPGuard off guard” [11]. We
found that our kBouncer example exploits that rely either on i-call-gadgets or
on i-loop-gadgets (both minimal vulnerable programs and MPlayer) already by-
passed ROPGuard’s implementation in EMET. In turn, ROPGuard successfully
stopped all of the three corresponding unmodified exploits. For ROPGuard, the
discussed i-call-gadgets and i-loop-gadgets invoke the protected WinExec() via
seemingly legitimate calls. These gadgets also make ROPGuard’s future con-
trol flow simulation stop early due to subsequent jumps/calls. The stack-related
checks do not apply to our example exploits.
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5 Security Assessment of ROPecker

ROPecker, a runtime ROP exploit mitigation system, was presented by Cheng
et al. in 2014 [8]. ROPecker aperiodically checks for abnormal branch sequences
in an application’s control flow. For that, ROPecker combines kBouncer-like ex-
amination of the LBR stack with ROPGuard-like future control flow simulation.
Cheng et al. specifically report on a prototype implementation of ROPecker as
a kernel module for 32-bit x86 Linux systems. Hence, we also only consider this
platform. For evaluation purposes, we implemented an experimental standalone
Pin-based emulator for ROPecker. We are confident that this emulator accu-
rately captures most of ROPecker’s aspects. All experiments we report on in the
following were conducted on either Ubuntu 12.0.4 or Debian 7.4.0 systems.

5.1 Triggering of Detection Logic

Other than comparable approaches, ROPecker does not apply any form of binary
rewriting such as API function hooking to inspect an application’s control flow.
Instead, ROPecker ensures that only a small fixed-size dynamic set of code pages
is executable at any given time within a process. ROPecker’s ROP detection
logic is invoked every time an access violation is triggered due to the target
application’s control flow reaching a new page outside the set of executable
pages. If no attack is detected, ROPecker replaces the oldest page in the set
of executable pages with the newly reached page and resumes the execution
of the corresponding thread/process. Cheng et al. refer to this technique as a
“sliding window mechanism”. They suggest using a window/set size of two to
four executable pages, corresponding to 8 to 16 KB of executable code, because
it is supposedly hard to find enough gadgets for a meaningful attack in less than
20 KB of code [8]. The pages inside the sliding window do not necessarily need
to be adjacent.

For our emulator, we use a fixed sliding window size of exactly one page to
achieve fine-granular capturing. Note that a smaller sliding window size results
in ROPecker’s detection logic being triggered more often. Hence, chances for
false negatives decrease while in turn chances for false positives increase.

5.2 Examination of Indirect Branch Sequences

Each time it is triggered, ROPecker’s detection logic tries to identify attacks by
analyzing the past and the (simulated) future control flow of a thread/process
for chains of ROP gadgets. Per default, ROPecker considers a sequence of in-
structions to be a gadget in case it meets the following criteria [8]: (i) the last
instruction is an indirect branch; (ii) no other branch (e. g., call or jnz) is
contained; (iii) it consists of at most six instructions. This limit was arbitrarily
chosen by Cheng et al. ROPecker can be configured to consider longer gadgets.
We refer to gadgets that comply with ROPecker’s definition as r-gadgets.
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Table 1. Exemplary maxnor as determined by our ROPecker emulator.

Application maxnor Activity
Nginx 1.4.0 5 delivery of small web page
Adobe Reader 9.5.5 9 opening of document
Pidgin 2.10.9 9 IRC chat
Gimp 2.8.2 9 simple drawing
VLC 2.0.8 11 playback of short OGG video
LibreOffice Calc 3.5.7.2 17 creation of simple spreadsheet

Analysis of Past and Future Indirect Branches Like kBouncer, ROPecker
configures the CPU’s LBR facility to only track indirect branches in user mode.
Whenever execution reaches a page outside the sliding window, ROPecker first
examines the thread’s/process’ past indirect branches for a chain of r-gadgets via
the LBR stack: going backward from the most recent one, it is checked for each
LBR entry (which necessarily ends in an indirect branch) if its branch destina-
tion is an r-gadget. The past detection stops with the first entry not matching
this characteristic. After that, ROPecker simulates the thread’s/process’ future
indirect branches using rather complex emulation techniques going forward from
the most recent LBR entry’s branch destination. As soon as a code sequence is
encountered that does not qualify as r-gadget, the future detection stops. If the
accumulated length of the past and the future gadget chains is above a certain
threshold, an attack is assumed.

Gadget Chain Detection Threshold Cheng et al. suggest using a chain de-
tection threshold between 11 and 16 r-gadgets where “an ideal threshold should
be smaller than the minimum length minrop of all ROP gadget chains, and
at the same time, be larger than the maximum length maxnor of the gadget
chains identified from normal execution flows” [8]. They report that various real
world and artificial ROP chains analyzed by them consisted of 17 to 30 gad-
gets. Hence, they universally assume minrop = 17. To assess maxnor, Cheng et
al. examined a variety of applications (certain Linux coreutils, SPEC INT2006,
ffmpeg, graphics-magick, and Apache web server) during runtime. For the code
paths triggered in their experiments, they found maxnor overall to be 10 and for
Apache even only 4; values well below their empirically determined minrop = 17.

In practice, higher values for maxnor are not totally unlikely though. Consider
for example again the simple recursive function factorial() from Listing 1.1 in
§ 3 whose epilogue qualifies as r-gadget. We used our experimental emulator to
explore the range of maxnor for popular applications not covered by experiments
conducted by Cheng et al. The results are listed in Table 1. The encountered
chain of 17 r-gadgets for LibreOffice Calc resulted from a long chain of returns
from nested function calls (similar to the factorial() example). We emphasize
that our emulator with a sliding window size of only one page naturally catches
more false positives and produces higher maxnor than configurations with larger
sliding windows. However, these numbers suggest that ROPecker might not be
equally well applicable to all kinds of applications, as in certain cases maxnor

could be too high to allow for a reasonably low detection threshold minrop.
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Fig. 5. Generic layout of a gadget chain bypassing ROPecker. Conventional gadgets
(white) are interleaved with gadgets stopping the past and future detection logic (gray).

5.3 Circumvention

We now discuss methods for the generic circumvention of ROPecker. In general,
we find that the narrow definition of r-gadgets makes ROPecker only a small
hurdle for aware attackers.

Cheng et al. state that ROPecker’s “[...] payload detection algorithm is de-
signed based on the assumption that a gadget does not contain direct branch
instructions, which is also used in the many previous work [...]. Therefore, the
gadget chain detection stops when a direct branch instruction is encountered” [8].
They also acknowledge that an “[...] adversary may carefully insert long gadgets
into consecutive short gadgets to make the length of each segmented gadget
chain not exceed the gadget chain threshold [...]” to achieve the same. Note that
these statements already describe all that is necessary in order to successfully
bypass ROPecker in a generic manner. As depicted in Figure 5, attackers simply
need to take care to periodically mix in a non-r-gadget (containing a branch or
more than six instructions) into their gadget chains in order to stop ROPecker’s
past and future detection logic before the given detection threshold is reached.
In the following, we refer to such a gadget as blocker-gadget.

Cheng et al. argue that to the best of their knowledge an attack using jump-
containing gadgets “[...] has not been found in real-life.”. We note that this
observation does not necessarily imply that jump-containing (or long) gadgets
are hard to use. Instead, it is in the uttermost cases trivial for an attacker to find
and use such gadgets, as they do not need to be meaningful in any context. The
only requirement is that they do not render the program state uncontrollable
as already discussed in § 3 for kBouncer. Even entire regular functions as the
ones discussed in § 3.3 can be misused by attackers here. In our example exploit
against ROPecker (see § 5.4) we use for example the standard POSIX function
usleep() as blocker-gadget.

5.4 Example Exploit

To demonstrate the applicability of the discussed ROPecker bypassing strategy,
we created a ROP-based exploit for a stack buffer overflow vulnerability (CVE-
2013-2028) [27] in the popular web server Nginx version 1.4.0. We inserted the
function usleep() as blocker-gadget into the ROP chain after at least every sev-
enth regular gadget. The entire resulting ROP payload is 107 dwords long—92
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dwords are needed without ROPecker evasion—and creates a file on the target
system using the system() function. Our ROPecker emulator detects a maxi-
mum chain length of nine for the exploit due to the epilogue of usleep() con-
taining two chained r-gadgets. As this is below the default detection threshold
of 11, the attack goes unnoticed.

5.5 Possible Improvements

We again briefly review potential improvements to address our bypasses and
discuss their effectiveness.

Detection of Unaligned Gadgets. Cheng et al. propose that ROPecker could be
improved by considering the execution of unaligned instructions as attack [8].
They note though, that it may not always be possible to decide if a given x86
instruction sequence is aligned or not. Attackers restricted to aligned gadgets
would probably need longer gadget chains on average to achieve compromise.
Also, finding suitable gadgets in general would be more complicated. The generic
circumvention approach described in § 5.3 could though not be prevented.

Accumulation of Chain Lengths. To tackle attacks relying on blocker-gadgets,
Cheng et al. suggest an extension to ROPecker that accumulates the detected
chain lengths for multiple (e. g., three) consecutive sliding window updates. How-
ever, we find that an attacker could still generically avoid detection by using a
(meaningless) function as blocker-gadget which updates the sliding window sev-
eral times. When such a function returns to the next r-gadget, the accumulated
chain length should in the uttermost cases be well below the detection threshold.
We found for example the already mentioned usleep() to be a suitable function
for this purpose. In our experiments, the function reliably switched pages several
times before finally executing a system call.

Broadening of Gadget Definition. Lastly, Cheng et al. propose extending ROP-
ecker in such a way that instruction sequences connected by direct jumps are
also considered as gadgets, but also state that this might increase the number of
false positives. In order to evaluate the practicality of such an extension, we ex-
perimentally modified our ROPecker emulator to consider kBouncer’s k-gadgets
(up to 20 instructions including direct jumps) instead of r-gadgets. With this
hypothetical extension in place, we generally encountered high numbers of false
positives often corresponding to astonishingly long benign chains of k-gadgets.
For example, our emulator detected a chain of length 14 in libc for a small hello
world application. While monitoring VLC during the playback of a short OGG
video, the emulator even detected chains of lengths 77 and 82 in librsvg2 and
libexpat respectively; the first being induced by a long static sequence of indirect
calls to a very short function and the latter by a compact looped switch-case
statement implemented using a central indirect jump. This hints at ROPecker
possibly not being reasonably extendable to consider significantly more complex
gadgets.
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Checking for Illegal Returns. We believe that ROPecker’s defensive strength
could indeed be increased if it would consider returns to non call-preceded loca-
tions as indicator for an attack like kBouncer and ROPGuard do. Such an exten-
sion would effectively require attackers to largely resort to call-preceded gadgets
or JOP-like concepts such as i-loop-gadgets (see § 3.4). While this would not
prevent bypasses, it could significantly raise the bar. We would expect negligible
overhead and close to zero additional false positives from such an extension as to
the best of our knowledge returns to not call-preceded locations virtually never
occur in benign control flows.

6 Related Work

To the best of our knowledge, the discussed ROP mitigation techniques have not
been reviewed in other academic publications so far. Recently and concurrently
to our work, Göktaş et al. demonstrate ways to bypass certain control-flow-
integrity (CFI) systems for binary applications [12]. They show how certain
types of gadgets still allow for ROP-like attacks in the presence of these systems.
They mention that two of these gadget types could potentially be used to “call
a function simply for tricking kBouncer” and refer to future work. We note that
our described exploits would be prevented by these CFI systems. Our approaches
could though be combined with the one presented by Göktaş et al.

Stephen Checkoway discusses in an article on the Internet, among others,
kBouncer’s first version [24] that “does not protect against return-oriented pro-
gramming that doesn’t use returns” [5]. This variant of kBouncer was meant
to be invoked on the invocation of system calls instead of top-level WinAPI
functions. Checkoway states that long enough regular code paths leading to sys-
tem calls in an application could be used to erase traces of a ROP chain before
kBouncer’s detection logic becomes active.

The insights of both Göktaş et al. and Checkoway are similar to the founda-
tion of our described attack techniques.

7 Conclusions

We examined the practical effectiveness of three recent approaches that attempt
to prevent return-oriented programming. These are kBouncer [25], ROPecker [8],
and ROPGuard [10]. All of them can reliably detect and prevent legacy exploits.
We showed in turn that they can be bypassed in generic ways with little effort by
aware adversaries. The basic problem is that the three approaches only analyze
a limited number of recent (and upcoming) branches and an adversary can fool
the employed heuristics. Both kBouncer and ROPecker rely on a custom kernel
driver and employ complicated detection techniques build upon the LBR fea-
ture of modern processors. They though fall short to supply significantly higher
protection levels than the much simpler ROPGuard. Our experimental results
also hint at kBouncer and ROPecker being more prone to false positive attack
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detections than ROPGuard. We conclude that LBR, a feature that was origi-
nally designed for profiling and debugging purposes, is probably not particularly
well suited for the implementation of strong defensive measures with reasonable
runtime overhead.
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