

Automotive Defeat Devices

HackPra

January 24, 2018

Moritz Contag

@dwuid https://dwuid.com

\$ whoami

RUHR-UNIVERSITÄT BOCHUM

BACHELOR IT-SICHERHEIT / INFORMATIONSTECHNIK

Fakultät für Elektrotechnik und Informationstechnik

- 2011 B. Sc. and M. Sc. at RUB
- IT Security/Information Engineering

- 2015 PhD Candidate
- Chair for Systems Security
- Prof. Thorsten Holz

- Capture-the-Flag team at RUB
- Annual hack.lu CTF (since 2010)
- Hack with us!

https://fluxfingers.net/contact

CTF meets Automotive Security

- Capture-the-Flag competition
- Riscure and Argus Cyber Security

- Automotive focus
- Hardware-based

32nd Chaos Communication Congress

How They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles

Moritz Contag^{*}, Guo Li[†], Andre Pawlowski^{*}, Felix Domke[‡], Kirill Levchenko[†], Thorsten Holz^{*}, and Stefan Savage[†]

* Ruhr-Universität Bochum, Germany, {moritz.contag, andre.pawlowski, thorsten.holz}@rub.de [†] University of California, San Diego, {gul027, klevchen, savage}@cs.ucsd.edu [‡] tmbinc@elitedvb.net

Abstract—Modern vehicles are required to comply with a range of environmental regulations limiting the level of emissions for various greenhouse gases, toxins and particulate matter. To ensure compliance, regulators test vehicles in controlled settings and empirically measure their emissions at the tailpipe. However, the black box nature of this testing and the standardization of its forms have created an opportunity for evasion. Using modern electronic engine controllers, manufacturers can programmatically infer when a car is undergoing an emission test and alter the behavior of the vehicle to comply with emission standards, while exceeding them during normal driving in favor of improved performance. While the use of such a defeat device determined that the vehicle was not under test, it would disable certain emission control measures, in some cases leading the vehicle to emit up to 40 times the allowed nitrogen oxides [15].

Defeat devices like Volkswagen's are possible because of how regulatory agencies test vehicles for compliance before they can be offered for sale. In most jurisdictions, including the US and Europe, emissions tests are performed on a chassis dynamometer, a fixture that holds the vehicle in place while allowing its tires to rotate freely. During the test, a vehicle is made to follow a precisely defined speed profile (i.e.,

Exhaust Aftertreatment Systems

Federal Test Procedure

- Specify time vehicle speed.
- Different tests per jurisdiction (EPA, CARB, EU).
- **Standardized** tests, publicly available.
- Runtime about 20–30 minutes.

Defeat Devices

Auxiliary Emission Control Device (AECD) means any element of design which senses

- temperature,
- vehicle speed,
- engine RPM,
- transmission gear,
- manifold vacuum,

or any other parameter for the purpose of **activating**, **modulating**, **delaying**, or **deactivating** the operation of any part of the emission control system.

RUHR

UNIVERSITÄT

RUR

Defeat device means an auxiliary emission control device (AECD) that reduces the effectiveness of the emission control system under conditions which may reasonably be expected to be encountered in normal vehicle operation and use, **unless**:

- 1. Such conditions are substantially included in the Federal emission test procedure;
- 2. The need for the AECD is justified in terms of **protecting the vehicle against damage** or accident;
- 3. The AECD does not go beyond the requirements of engine starting; or
- 4. The AECD applies only for emergency vehicles [...]

Two essential components of a defeat device:

- 1. Detect an ongoing emissions test, and
- 2. react to it by modifying emission-related subsystems.

Two essential components of a defeat device:

- 1. Detect an ongoing emissions test, and
- 2. react to it by modifying emission-related subsystems.

We mostly focus on the first part in our talk.

Emissions test detection can be of varying complexity. Distinguish two flavors:

Passive — Targeting environmental parameters (e.g., altitude, temperature).

Emissions test detection can be of varying complexity. Distinguish two flavors:

- **Passive** Targeting **environmental parameters** (e.g., altitude, temperature).
- Active Specifically targeting characteristic vehicle behavior.

Emissions test detection can be of varying complexity. Distinguish two flavors:

- **Passive** Targeting **environmental parameters** (e.g., altitude, temperature).
- Active Specifically targeting characteristic vehicle behavior.

Examples

• Some Cadillacs stopped clean driving when turning on heating or air conditioning.

Emissions test detection can be of varying complexity. Distinguish two flavors:

- **Passive** Targeting **environmental parameters** (e.g., altitude, temperature).
- Active Specifically targeting characteristic vehicle behavior.

Examples

- Some Cadillacs stopped clean driving when turning on heating or air conditioning.
- The Opel Zafira can detect test cycles using rpm-torque operating points.

Engine Control Unit Firmware

# Code	Title	Note
4	control unit for diesel engine see illustration, item:	906-20,1
(4)	control unit for petrol engine see illustration, item:	906-22,1
5	control unit for electric ancillary hydraulic pump for gear oil see illustration, item:	927-45,7 Model data: PR-71,71,8
6	control unit for airbag see illustration, item:	969-30,1
7	power module for cornering light see illustration, item:	941-10,4 Model data: PR-83M
(7)	power module for cornering light see illustration, item:	941-20,4 Model data: PR-80P
8	control unit for differential lock see illustration, item:	927-45,5 Model data: PR-PM
9	control unit for 8-speed automatic gearbox see illustration, item:	927-45,1 Model data: PR-GIG
10	control unit for backrest release see illustration, item:	959-47,5 Model data: PR-UK2
11	control unit for fuel pump see illustration, item:	919-30,10
12	control unit for electro- mechanical parking brake see illustration, item:	907-65,8
13	control unit for differential locks see illustration, item:	927-45,3 Model data: PR-1YI

AU: idle Down Disk: 14GB

AU: idle Down Disk: 14GB

IGB

/begin MEASUREMENT EnvT t "Umgebungslufttemperatur"

ASAM MCD-2 MC ".a2l files"

SWORD	
Temp_Cels	/begin COMPU_METHOD
1	Temp_Cels
100	
-3549.940	RAT_FUNC
3003.560	"%6.1"
	"deg C"
FORMAT "%8.3"	
	COEFFS 0 10 2731
ECH ADDRESS AVDAAAAAAA	And COMPUL METHOD

ECU_ADDRESS 0xD0000AA6 /end MEASUREMENT

31.4 0 0 1 /end COMPU_METHOD

/begin CHARACTERISTIC

AirCtl_mDesBasPiI1_MAP "Grundkennfeld Luftmassensollwert"

MAP

0x8037CE3A Map_Xs16Ys16Ws16

1500.000 AirMassPerCyl 0.00 1500.000

FORMAT "%8.3" EXTENDED_LIMITS -3276.800 3276.700 /begin AXIS DESCR STD AXIS AirCtl_nEng0 EngN 16 . . . /end AXIS_DESCR /begin AXIS DESCR STD AXIS AirCtl_qMonDesBas_mp IniMass 16 /end AXIS DESCR /end CHARACTERISTIC

AirCtl_mDesBasPil1_MAP

- Core function provided by the base system.
 - Unlikely to change across firmware versions.
 - Easy to detect in stripped images.
- Used to query characteristic curves specifying physical processes.

- Core function provided by the base system.
 - Unlikely to change across firmware versions.
 - Easy to detect in stripped images.
- Used to query characteristic curves specifying physical processes.

Point Queries

y ← SrvX_IpoCurveS16(curve, x)

Volkswagen AG

 $y_0 \leftarrow SrvX_IpoCurveS16(curve_{\perp}, x)$ $y_1 \leftarrow SrvX_IpoCurveS16(curve_{\perp}, x)$

Vendor-specific "Acoustic Function"

 $y_0 \leftarrow SrvX_IpoCurveS16(curve_{\perp}, x)$ $y_1 \leftarrow SrvX_IpoCurveS16(curve_{\top}, x)$

"Profile matches"

Vendor-specific "Acoustic Function"

Vendor-specific "Acoustic Function"

 $y_0 \leftarrow SrvX_IpoCurveS16(curve_{\perp}, x)$ $y_1 \leftarrow SrvX_IpoCurveS16(curve_{\perp}, x)$

"Profile matches"

- $\mathbf{x} \coloneqq$ "time since engine start"
- $\mathbf{y} \coloneqq$ "distance covered"

• Based on PyPy 2.7 and IDA Pro 6.x.

[17905: 0 - 18:17:12] Analyzing FL_03L906012___7444. [17905: 0 - 18:17:12] Pre-processing database... [17905: 1 - 18:17:51] Exporting functions... [17905: 2 - 18:18:46] Analyzing functions... [17905: 3 - 18:19:17] Exporting curves... [17905: 4 - 18:19:42] Analyzing curves...

Function 80187214 matches the following test cycles:

- (802f6f70, 802f6fae): FTP-75
- (802f6fec, 802f702a): LA92
- (802f7068, 802f70a6): US06
- (802f70e4, 802f7122): SC03
- (802f7160, 802f719e): HWFET
- (802f71dc, 802f721a): ECE-15
- (802f7258, 802f7296): EUDC EUDCL
- (802f72d4, 802f7312): FTP-75 CADC-RURAL IM240
- (802f7350, 802f738e): NEDC ECE-15 JP10 WLTP-1...
- (802f6ef4, 802f6f32): CADC-RURAL SC03

- Based on PyPy 2.7 and IDA Pro 6.x.
- Electronic Diesel Control EDC17 by Bosch.

[17905: 0 - 18:17:12] Analyzing FL_03L906012___7444. [17905: 0 - 18:17:12] Pre-processing database... [17905: 1 - 18:17:51] Exporting functions... [17905: 2 - 18:18:46] Analyzing functions... [17905: 3 - 18:19:17] Exporting curves... [17905: 4 - 18:19:42] Analyzing curves...

Function 80187214 matches the following test cycles:

- (802f6f70, 802f6fae): FTP-75
- (802f6fec, 802f702a): LA92
- (802f7068, 802f70a6): US06
- (802f70e4, 802f7122): SC03
- (802f7160, 802f719e): HWFET
- (802f71dc, 802f721a): ECE-15
- (802f7258, 802f7296): EUDC EUDCL
- (802f72d4, 802f7312): FTP-75 CADC-RURAL IM240
- (802f7350, 802f738e): NEDC ECE-15 JP10 WLTP-1...
- (802f6ef4, 802f6f32): CADC-RURAL SC03

- Based on PyPy 2.7 and IDA Pro 6.x.
- Electronic Diesel Control EDC17 by Bosch.
- Infineon TriCore 179x processor.

[17905: 0 - 18:17:12] Analyzing FL_03L906012___7444. [17905: 0 - 18:17:12] Pre-processing database... [17905: 1 - 18:17:51] Exporting functions... [17905: 2 - 18:18:46] Analyzing functions... [17905: 3 - 18:19:17] Exporting curves... [17905: 4 - 18:19:42] Analyzing curves...

Function 80187214 matches the following test cycles:

- (802f6f70, 802f6fae): FTP-75
- (802f6fec, 802f702a): LA92
- (802f7068, 802f70a6): US06
- (802f70e4, 802f7122): SC03
- (802f7160, 802f719e): HWFET
- (802f71dc, 802f721a): ECE-15
- (802f7258, 802f7296): EUDC EUDCL
- (802f72d4, 802f7312): FTP-75 CADC-RURAL IM240
- (802f7350, 802f738e): NEDC ECE-15 JP10 WLTP-1...
- (802f6ef4, 802f6f32): CADC-RURAL SC03

- Based on PyPy 2.7 and IDA Pro 6.x.
- Electronic Diesel Control EDC17 by Bosch.
- Infineon TriCore 179x processor.
- Lift to Static Single Assignment form, compiler optimizations.

[17905: 0 - 18:17:12] Analyzing FL_03L906012___7444. [17905: 0 - 18:17:12] Pre-processing database... [17905: 1 - 18:17:51] Exporting functions... [17905: 2 - 18:18:46] Analyzing functions... [17905: 3 - 18:19:17] Exporting curves... [17905: 4 - 18:19:42] Analyzing curves...

Function 80187214 matches the following test cycles:

- (802f6f70, 802f6fae): FTP-75
- (802f6fec, 802f702a): LA92
- (802f7068, 802f70a6): US06
- (802f70e4, 802f7122): SC03
- (802f7160, 802f719e): HWFET
- (802f71dc, 802f721a): ECE-15
- (802f7258, 802f7296): EUDC EUDCL
- (802f72d4, 802f7312): FTP-75 CADC-RURAL IM240
- (802f7350, 802f738e): NEDC ECE-15 JP10 WLTP-1...
- (802f6ef4, 802f6f32): CADC-RURAL SC03

30

Analyzed **926** firmware images spanning **eight** years, **333** try to detect at least one emission test cycle.

2009-01	Golf, Passat (2)	2013-11	Superb (3)
2009-07	A3	2013-12	Superb (2), Yeti (4)
2009-08	Passat Blue Motion	2014-03	Amarok (16), Eos, Tiguan, Yeti
2009-09	Golf (2), Passat (3)	2014-04	Q5, Superb (2)
2009-10	Golf+, Passat	2014-06	Amarok (6), Tiguan (4)
2009-11	A3 (8), Golf Blue Motion, Golf (2), Passat	2014-09	Alhambra
2009-12	A3 (5), Golf Variant (2), Golf+ (2), Golf (7), Jetta (3), Passat (4)	2014-10	Sharan
2010-01	Jetta, Passat (2)	2014-12	A4 (3), A6, Passat (4) ⊗
2010-03	A3 (2), Golf (3), Jetta, Passat (3), Q5 (4)	2015-01	Superb
2010-04	Jetta (2), Passat, Passat Coupe (4), Q5	2015-02	A3 (3)
2012-05	A3 (19), A4, A6, Alhambra (4), Altea, Eos (2), Golf, Ibiza (4), Leon,	2015-03	Alhambra (2)
	Octavia (6), Q5 (2), Superb (2), TT, Tiguan, Yeti (4)	2015-05	Alhambra (6), Sharan (6)
2012-06	Amarok (8), CC, Eos (2), Golf (2), Jetta (2), Octavia (3), Q5 (2),	2015-07	Q3 (2)
	Sharan (7), Tiguan, Touran (2)	2015-10	Altea (2), Yeti (3)
2012-07	A1 (3), Alhambra (4), Caddy (2), Sharan (8)	2015-11	Superb
2012-09	Golf (2), Passat, Yeti (6)	2016-02	Altea
2012-10	A3, Alhambra (2), Tiguan, Yeti	2016-03	A4, Exeo (4)
2012-12	Eos (2), Golf Cabriolet, Tiguan (7), Touran, Yeti	2016-04	A6, Exeo, Q3
2013-01	Leon, Passat	2016-06	Altea (3), CC (3), Jetta, Leon (2), Superb, Tiguan (2)
2013-05	Amarok (4)	2016-07	Amarok, CC, Golf, Superb
2013-06	Amarok (5), Superb (3), Tiguan	2016-08	CC (3), Golf Cabriolet, Golf (2), Passat (2), Scirocco, Touran (3)
2013-07	Octavia	2016-09	CC (14), Octavia (2), Passat (2), Tiguan (7)
2013-08	Yeti (3)	2016-10	Eos

Affected Subsystems

- InjCrv injection pattern, injection timing
- **Rail**, **PCR** manifold pressure

- SmkLim smoke limitation
- AFS, AirCtl desired air mass EGR
 - soot mass simulation
 - desired soot mass DPF
 - desired reducing agent SCR

 \cdot ASMod

• PFlt

• SCREEC

Fiat Chrysler Automobiles

🛞 after 1600 seconds

Home / News / Industry / California found a new cheat device in Audi transmissions: report

California found a new cheat device in Audi transmissions: report

Take Us With You!

News In Your Inbox

GreenCarReports

Enter email

I agree to receive emails from the site. I can withdraw my consent at any time by unsubscribing.

RELATED ARTICLES

TATULATION OF THE PARTY OF THE

Attribution

- > Pumpe-Düse-Einspritzung
- > Konventionelle Einspritzung
- > Motorsteuerung
- > Glühkerzen
- > Abgasnachbehandlung
- > Vakuumpumpe
- > Lambdasonde
- > Luftmassenmesser
- > Weitere Sensoren
- > Großdiesel

Bosch eXchange

So gut wie Neuware: wiederaufbereitete Kfz-Teile von Bosch ∌Xchange.

Electronic Repair Service

· Vorteil für Werkstätten: Reparaturen in Spitzenqualität

Produktinformation

Motorsteuerung: Motorfunktionen perfekt geregelt

Die EDC (Electronic Diesel Control) ist die Motorsteuerung beim Diesel. Sie regelt die Funktionen des Einspritzsystems und sorgt dafür, dass der Motor das angeforderte Motordrehmoment bereitstellt. Die Einspritzung wird dabei permanent auf den Motor und die Fahrsituation abgestimmt. Dieselmotoren mit Bosch-Motorsteuerung überzeugen durch hohe Dynamik bei geringem Kraftstoffverbrauch und optimierte Motorleistung.

Vorteile

- Sparsamer Betrieb durch schnelle Anpassung aller Einspritzparameter

Bosch Service

Profitieren Sie von erstklassiger Service-Qualität beim Bosch Service in Ihrer Nähe.

Supplied Fixes

United States

				NO _x control ¹	Hardware replacement	Labor hours	Fuel economy loss	Diesel Exhaust Fluid increase
Gen 1	2009	VW Jetta, Beetle, Golf	2.0L	LNT EGR	Lean-NO _x trap Particulate filter Glow plug module	6	Up to 2 mpg ³	N/A
Gen 1	2010- 2014	Audi A3 VW Jetta, Beetle, Golf	2.0L	LNT EGR	Lean-NO _x trap	2.5 - 3	Up to 2 mpg ³	N/A
Gen 2	2012- 2014	VW Passat ²	2.0L	SCR EGR	Software only	1	Up to 1 mpg⁴	50% - 130%
Gen 3	2015	Audi A3 VW Jetta, Beetle, Golf, Passat	2.0L	SCR EGR	SCR catalyst Particulate filter Oxidation catalyst 2 nd NO _x sensor	9	None	1% - 14%
Gen 1	2009- 2012	VW Touareg	3.0L	SCR EGR	No fix - vehicles will be scrapped			
Gen 2.1	2013- 2014	VW Touareg Porsche Cayenne Audi Q7	3.0L	SCR EGR	SCR catalyst Cyl. pressure sensor Particulate sensor	3	Up to 1 mpg⁵	About 40%
Gen 2.1	2015	Audi Q7	3.0L	SCR EGR	SCR catalyst Particulate sensor	3	Up to 1 mpg⁴	About 40%
Gen 2.2	2015- 2016	VW Touareg Porsche Cayenne	3.0L	SCR EGR	Software only	1	Up to 1 mpg⁴	About 40%
Gen 2	2014- 2016	Audi A6, A7, A8, Q5	3.0L	SCR EGR	Fix not yet defined			

www.theicct.org

Europe

				NO _x control¹	Hardware replacement	Labor hours	Fuel economy loss	Diesel Exhaust Fluid increase
Euro5	2009- 2014	Audi A1, A3, A4, A5, A6, Q3, Q5, TT	1.2L	EGR	Software only²	0.5	None	N/A
		Seat Alhambra, Altea, Exeo, Ibiza, Leon, Toledo Skoda Fabia, Roomster, Rapid, Yeti, Octavia, Superb VW Golf, Passat, Tiguan, Polo, Jetta, Scirocco, Caddy, Transporter	1.6L		Flow transformer ³	1.0	None	N/A
			2.0L		Software only ²	0.5	None	N/A
Euro5	2010- 2013	Audi A7, A8 Porsche Cayenne	3.0L	EGR	Software only	0.5		N/A
Euro6	2014- 2017	Porsche Cayenne	3.0L	SCR EGR	Software only	1.0		
Euro6	2014- 2017	Audi A8	4.2L	SCR EGR	Software only			

Future of Emissions Testing

Strict Regulations

Public Test Cycles

Black Box Testing

State of Emissions Testing

Strict Regulations <u>Public Test Cycles</u> Black Box Testing Portable Emissions Measurement

Compliance testing now is a **software verification problem**.

- Easier to hide in software; black box testing alone is insufficient.
- Portable Emissions Measurement only side-steps the problem.
- Software analysis facilitates large-scale testing.

Conclusion

- We analyzed two **modern defeat devices** in software:
 - Volkswagen AG
 Fiat 500X
 timing-based check
- We performed a large-scale study of the VW AG defeat device.
 - Tested > 900 firmware images.
 - $\cdot\,$ ~300 try to detect at least one test cycle.

- Black-box emissions testing is insufficient.
- Easy to cheat using software, high incentive to do so.
- Software verification of compliance poses a new challenge.